EconPapers    
Economics at your fingertips  
 

Double Machine Learning for Static Panel Models with Fixed Effects

Paul S. Clarke and Annalivia Polselli

Papers from arXiv.org

Abstract: Recent advances in causal inference have seen the development of methods which make use of the predictive power of machine learning algorithms. In this paper, we develop novel double machine learning (DML) procedures for panel data in which these algorithms are used to approximate high-dimensional and nonlinear nuisance functions of the covariates. Our new procedures are extensions of the well-known correlated random effects, within-group and first-difference estimators from linear to nonlinear panel models, specifically, Robinson (1988)'s partially linear regression model with fixed effects and unspecified nonlinear confounding. Our simulation study assesses the performance of these procedures using different machine learning algorithms. We use our procedures to re-estimate the impact of minimum wage on voting behaviour in the UK. From our results, we recommend the use of first-differencing because it imposes the fewest constraints on the distribution of the fixed effects, and an ensemble learning strategy to ensure optimum estimator accuracy.

Date: 2023-12, Revised 2024-12
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2312.08174 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.08174

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2312.08174