RetailSynth: Synthetic Data Generation for Retail AI Systems Evaluation
Yu Xia,
Ali Arian,
Sriram Narayanamoorthy and
Joshua Mabry
Papers from arXiv.org
Abstract:
Significant research effort has been devoted in recent years to developing personalized pricing, promotions, and product recommendation algorithms that can leverage rich customer data to learn and earn. Systematic benchmarking and evaluation of these causal learning systems remains a critical challenge, due to the lack of suitable datasets and simulation environments. In this work, we propose a multi-stage model for simulating customer shopping behavior that captures important sources of heterogeneity, including price sensitivity and past experiences. We embedded this model into a working simulation environment -- RetailSynth. RetailSynth was carefully calibrated on publicly available grocery data to create realistic synthetic shopping transactions. Multiple pricing policies were implemented within the simulator and analyzed for impact on revenue, category penetration, and customer retention. Applied researchers can use RetailSynth to validate causal demand models for multi-category retail and to incorporate realistic price sensitivity into emerging benchmarking suites for personalized pricing, promotions, and product recommendations.
Date: 2023-12
New Economics Papers: this item is included in nep-agr and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2312.14095 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.14095
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().