EconPapers    
Economics at your fingertips  
 

Shai: A large language model for asset management

Zhongyang Guo, Guanran Jiang, Zhongdan Zhang, Peng Li, Zhefeng Wang and Yinchun Wang

Papers from arXiv.org

Abstract: This paper introduces "Shai" a 10B level large language model specifically designed for the asset management industry, built upon an open-source foundational model. With continuous pre-training and fine-tuning using a targeted corpus, Shai demonstrates enhanced performance in tasks relevant to its domain, outperforming baseline models. Our research includes the development of an innovative evaluation framework, which integrates professional qualification exams, tailored tasks, open-ended question answering, and safety assessments, to comprehensively assess Shai's capabilities. Furthermore, we discuss the challenges and implications of utilizing large language models like GPT-4 for performance assessment in asset management, suggesting a combination of automated evaluation and human judgment. Shai's development, showcasing the potential and versatility of 10B-level large language models in the financial sector with significant performance and modest computational requirements, hopes to provide practical insights and methodologies to assist industry peers in their similar endeavors.

Date: 2023-12
New Economics Papers: this item is included in nep-ain, nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2312.14203 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.14203

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2312.14203