Discrete-Time Mean-Variance Strategy Based on Reinforcement Learning
Xiangyu Cui,
Xun Li,
Yun Shi and
Si Zhao
Papers from arXiv.org
Abstract:
This paper studies a discrete-time mean-variance model based on reinforcement learning. Compared with its continuous-time counterpart in \cite{zhou2020mv}, the discrete-time model makes more general assumptions about the asset's return distribution. Using entropy to measure the cost of exploration, we derive the optimal investment strategy, whose density function is also Gaussian type. Additionally, we design the corresponding reinforcement learning algorithm. Both simulation experiments and empirical analysis indicate that our discrete-time model exhibits better applicability when analyzing real-world data than the continuous-time model.
Date: 2023-12
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2312.15385 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.15385
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().