EconPapers    
Economics at your fingertips  
 

Discrete-Time Mean-Variance Strategy Based on Reinforcement Learning

Xiangyu Cui, Xun Li, Yun Shi and Si Zhao

Papers from arXiv.org

Abstract: This paper studies a discrete-time mean-variance model based on reinforcement learning. Compared with its continuous-time counterpart in \cite{zhou2020mv}, the discrete-time model makes more general assumptions about the asset's return distribution. Using entropy to measure the cost of exploration, we derive the optimal investment strategy, whose density function is also Gaussian type. Additionally, we design the corresponding reinforcement learning algorithm. Both simulation experiments and empirical analysis indicate that our discrete-time model exhibits better applicability when analyzing real-world data than the continuous-time model.

Date: 2023-12
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2312.15385 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.15385

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2312.15385