Variable Selection in High Dimensional Linear Regressions with Parameter Instability
Alexander Chudik,
Mohammad Pesaran and
Mahrad Sharifvaghefi
Papers from arXiv.org
Abstract:
This paper considers the problem of variable selection allowing for parameter instability. It distinguishes between signal and pseudo-signal variables that are correlated with the target variable, and noise variables that are not, and investigate the asymptotic properties of the One Covariate at a Time Multiple Testing (OCMT) method proposed by Chudik et al. (2018) under parameter insatiability. It is established that OCMT continues to asymptotically select an approximating model that includes all the signals and none of the noise variables. Properties of post selection regressions are also investigated, and in-sample fit of the selected regression is shown to have the oracle property. The theoretical results support the use of unweighted observations at the selection stage of OCMT, whilst applying down-weighting of observations only at the forecasting stage. Monte Carlo and empirical applications show that OCMT without down-weighting at the selection stage yields smaller mean squared forecast errors compared to Lasso, Adaptive Lasso, and boosting.
Date: 2023-12, Revised 2024-07
New Economics Papers: this item is included in nep-for
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2312.15494 Latest version (application/pdf)
Related works:
Working Paper: Variable Selection in High Dimensional Linear Regressions with Parameter Instability (2024) 
Working Paper: Variable Selection in High Dimensional Linear Regressions with Parameter Instability (2023) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.15494
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().