Zero-Inflated Bandits
Haoyu Wei,
Runzhe Wan,
Lei Shi and
Rui Song
Papers from arXiv.org
Abstract:
Many real-world bandit applications are characterized by sparse rewards, which can significantly hinder learning efficiency. Leveraging problem-specific structures for careful distribution modeling is recognized as essential for improving estimation efficiency in statistics. However, this approach remains under-explored in the context of bandits. To address this gap, we initiate the study of zero-inflated bandits, where the reward is modeled using a classic semi-parametric distribution known as the zero-inflated distribution. We develop algorithms based on the Upper Confidence Bound and Thompson Sampling frameworks for this specific structure. The superior empirical performance of these methods is demonstrated through extensive numerical studies.
Date: 2023-12, Revised 2025-01
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2312.15595 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.15595
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().