EconPapers    
Economics at your fingertips  
 

Linear and nonlinear causality in financial markets

Haochun Ma, Davide Prosperino, Alexander Haluszczynski and Christoph R\"ath

Papers from arXiv.org

Abstract: Identifying and quantifying co-dependence between financial instruments is a key challenge for researchers and practitioners in the financial industry. Linear measures such as the Pearson correlation are still widely used today, although their limited explanatory power is well known. In this paper we present a much more general framework for assessing co-dependencies by identifying and interpreting linear and nonlinear causalities in the complex system of financial markets. To do so, we use two different causal inference methods, transfer entropy and convergent cross-mapping, and employ Fourier transform surrogates to separate their linear and nonlinear contributions. We find that stock indices in Germany and the U.S. exhibit a significant degree of nonlinear causality and that correlation, while a very good proxy for linear causality, disregards nonlinear effects and hence underestimates causality itself. The presented framework enables the measurement of nonlinear causality, the correlation-causality fallacy, and motivates how causality can be used for inferring market signals, pair trading, and risk management of portfolios. Our results suggest that linear and nonlinear causality can be used as early warning indicators of abnormal market behavior, allowing for better trading strategies and risk management.

Date: 2023-12
New Economics Papers: this item is included in nep-fmk and nep-rmg
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2312.16185 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.16185

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2312.16185