Monitoring with Rich Data
Mira Frick,
Ryota Iijima and
Yuhta Ishii
Papers from arXiv.org
Abstract:
We consider moral hazard problems where a principal has access to rich monitoring data about an agent's action. Rather than focusing on optimal contracts (which are known to in general be complicated), we characterize the optimal rate at which the principal's payoffs can converge to the first-best payoff as the amount of data grows large. Our main result suggests a novel rationale for the widely observed binary wage schemes, by showing that such simple contracts achieve the optimal convergence rate. Notably, in order to attain the optimal convergence rate, the principal must set a lenient cutoff for when the agent receives a high vs. low wage. In contrast, we find that other common contracts where wages vary more finely with observed data (e.g., linear contracts) approximate the first-best at a highly suboptimal rate. Finally, we show that the optimal convergence rate depends only on a simple summary statistic of the monitoring technology. This yields a detail-free ranking over monitoring technologies that quantifies their value for incentive provision in data-rich settings and applies regardless of the agent's specific utility or cost functions.
Date: 2023-12, Revised 2024-07
New Economics Papers: this item is included in nep-mic and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2312.16789 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.16789
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().