Heterogeneous treatment effect estimation with high-dimensional data in public policy evaluation -- an application to the conditioning of cash transfers in Morocco using causal machine learning
Patrick Rehill and
Nicholas Biddle
Papers from arXiv.org
Abstract:
Causal machine learning methods can be used to search for treatment effect heterogeneity in high-dimensional datasets even where we lack a strong enough theoretical framework to select variables or make parametric assumptions about data. This paper uses causal machine learning methods to estimate heterogeneous treatment effects in the case of an experimental study carried out in Morocco which evaluated the effect of conditionalizing a cash transfer program on several outcomes including maths test scores which is the focus of this work. We explore treatment effects across a dataset of 1936 pre-treatment variables. For the most part, heterogeneity is modelled by two different factors, participation in education (at the baseline) and more general measures of poverty. Those who are more disadvantaged at the baseline benefit less from any treatment. While conditioning generally has a negative effect this more disadvantaged group is also hurt more by conditioning. The second purpose of this paper is to demonstrate and reflect upon a causal machine learning approach to policy evaluation. We propose a novel causal tree method for interpretable modelling of causal effects and reflect on the difficulty of explaining atheoretical results.
Date: 2024-01, Revised 2024-03
New Economics Papers: this item is included in nep-ara and nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2401.07075 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2401.07075
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().