Optimal Insurance to Maximize Exponential Utility when Premium is Computed by a Convex Functional
Jingyi Cao,
Dongchen Li,
Virginia R. Young and
Bin Zou
Papers from arXiv.org
Abstract:
We find the optimal indemnity to maximize the expected utility of terminal wealth of a buyer of insurance whose preferences are modeled by an exponential utility. The insurance premium is computed by a convex functional. We obtain a necessary condition for the optimal indemnity; then, because the candidate optimal indemnity is given implicitly, we use that necessary condition to develop a numerical algorithm to compute it. We prove that the numerical algorithm converges to a unique indemnity that, indeed, equals the optimal policy. We also illustrate our results with numerical examples.
Date: 2024-01
New Economics Papers: this item is included in nep-rmg and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2401.08094 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2401.08094
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().