Cross-Domain Behavioral Credit Modeling: transferability from private to central data
O. Didkovskyi,
N. Jean,
G. Le Pera and
C. Nordio
Papers from arXiv.org
Abstract:
This paper introduces a credit risk rating model for credit risk assessment in quantitative finance, aiming to categorize borrowers based on their behavioral data. The model is trained on data from Experian, a widely recognized credit bureau, to effectively identify instances of loan defaults among bank customers. Employing state-of-the-art statistical and machine learning techniques ensures the model's predictive accuracy. Furthermore, we assess the model's transferability by testing it on behavioral data from the Bank of Italy, demonstrating its potential applicability across diverse datasets during prediction. This study highlights the benefits of incorporating external behavioral data to improve credit risk assessment in financial institutions.
Date: 2024-01
New Economics Papers: this item is included in nep-ban, nep-big, nep-cmp and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2401.09778 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2401.09778
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().