Subjective Causality
Joseph Y. Halpern and
Evan Piermont ()
Papers from arXiv.org
Abstract:
We show that it is possible to understand and identify a decision maker's subjective causal judgements by observing her preferences over interventions. Following Pearl [2000], we represent causality using causal models (also called structural equations models), where the world is described by a collection of variables, related by equations. We show that if a preference relation over interventions satisfies certain axioms (related to standard axioms regarding counterfactuals), then we can define (i) a causal model, (ii) a probability capturing the decision-maker's uncertainty regarding the external factors in the world and (iii) a utility on outcomes such that each intervention is associated with an expected utility and such that intervention $A$ is preferred to $B$ iff the expected utility of $A$ is greater than that of $B$. In addition, we characterize when the causal model is unique. Thus, our results allow a modeler to test the hypothesis that a decision maker's preferences are consistent with some causal model and to identify causal judgements from observed behavior.
Date: 2024-01
New Economics Papers: this item is included in nep-dcm, nep-mic and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2401.10937 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2401.10937
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().