EconPapers    
Economics at your fingertips  
 

Local Diversity of Condorcet Domains

Alexander Karpov, Klas Markstr\"om, S{\o}ren Riis and Bei Zhou

Papers from arXiv.org

Abstract: Several of the classical results in social choice theory demonstrate that in order for many voting systems to be well-behaved the set domain of individual preferences must satisfy some kind of restriction, such as being single-peaked on a political axis. As a consequence it becomes interesting to measure how diverse the preferences in a well-behaved domain can be. In this paper we introduce an egalitarian approach to measuring preference diversity, focusing on the abundance of distinct suborders one subsets of the alternative. We provide a common generalisation of the frequently used concepts of ampleness and copiousness. We give a detailed investigation of the abundance for Condorcet domains. Our theorems imply a ceiling for the local diversity in domains on large sets of alternatives, which show that in this measure Black's single-peaked domain is in fact optimal. We also demonstrate that for some numbers of alternatives, there are Condorcet domains which have largest local diversity without having maximum order.

Date: 2024-01
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2401.11912 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2401.11912

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2401.11912