EconPapers    
Economics at your fingertips  
 

Entrywise Inference for Missing Panel Data: A Simple and Instance-Optimal Approach

Yuling Yan and Martin J. Wainwright

Papers from arXiv.org

Abstract: Longitudinal or panel data can be represented as a matrix with rows indexed by units and columns indexed by time. We consider inferential questions associated with the missing data version of panel data induced by staggered adoption. We propose a computationally efficient procedure for estimation, involving only simple matrix algebra and singular value decomposition, and prove non-asymptotic and high-probability bounds on its error in estimating each missing entry. By controlling proximity to a suitably scaled Gaussian variable, we develop and analyze a data-driven procedure for constructing entrywise confidence intervals with pre-specified coverage. Despite its simplicity, our procedure turns out to be instance-optimal: we prove that the width of our confidence intervals match a non-asymptotic instance-wise lower bound derived via a Bayesian Cram\'{e}r-Rao argument. We illustrate the sharpness of our theoretical characterization on a variety of numerical examples. Our analysis is based on a general inferential toolbox for SVD-based algorithm applied to the matrix denoising model, which might be of independent interest.

Date: 2024-01, Revised 2024-07
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2401.13665 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2401.13665

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2401.13665