Option pricing for Barndorff-Nielsen and Shephard model by supervised deep learning
Takuji Arai and
Yuto Imai
Papers from arXiv.org
Abstract:
This paper aims to develop a supervised deep-learning scheme to compute call option prices for the Barndorff-Nielsen and Shephard model with a non-martingale asset price process having infinite active jumps. In our deep learning scheme, teaching data is generated through the Monte Carlo method developed by Arai and Imai (2024). Moreover, the BNS model includes many variables, which makes the deep learning accuracy worse. Therefore, we will create another input variable using the Black-Scholes formula. As a result, the accuracy is improved dramatically.
Date: 2024-02
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2402.00445 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.00445
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().