Learning and Calibrating Heterogeneous Bounded Rational Market Behaviour with Multi-Agent Reinforcement Learning
Benjamin Patrick Evans and
Sumitra Ganesh
Papers from arXiv.org
Abstract:
Agent-based models (ABMs) have shown promise for modelling various real world phenomena incompatible with traditional equilibrium analysis. However, a critical concern is the manual definition of behavioural rules in ABMs. Recent developments in multi-agent reinforcement learning (MARL) offer a way to address this issue from an optimisation perspective, where agents strive to maximise their utility, eliminating the need for manual rule specification. This learning-focused approach aligns with established economic and financial models through the use of rational utility-maximising agents. However, this representation departs from the fundamental motivation for ABMs: that realistic dynamics emerging from bounded rationality and agent heterogeneity can be modelled. To resolve this apparent disparity between the two approaches, we propose a novel technique for representing heterogeneous processing-constrained agents within a MARL framework. The proposed approach treats agents as constrained optimisers with varying degrees of strategic skills, permitting departure from strict utility maximisation. Behaviour is learnt through repeated simulations with policy gradients to adjust action likelihoods. To allow efficient computation, we use parameterised shared policy learning with distributions of agent skill levels. Shared policy learning avoids the need for agents to learn individual policies yet still enables a spectrum of bounded rational behaviours. We validate our model's effectiveness using real-world data on a range of canonical $n$-agent settings, demonstrating significantly improved predictive capability.
Date: 2024-02
New Economics Papers: this item is included in nep-cmp, nep-hme and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2402.00787 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.00787
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().