EconPapers    
Economics at your fingertips  
 

Fast Online Changepoint Detection

Fabrizio Ghezzi, Eduardo Rossi and Lorenzo Trapani

Papers from arXiv.org

Abstract: We study online changepoint detection in the context of a linear regression model. We propose a class of heavily weighted statistics based on the CUSUM process of the regression residuals, which are specifically designed to ensure timely detection of breaks occurring early on during the monitoring horizon. We subsequently propose a class of composite statistics, constructed using different weighing schemes; the decision rule to mark a changepoint is based on the largest statistic across the various weights, thus effectively working like a veto-based voting mechanism, which ensures fast detection irrespective of the location of the changepoint. Our theory is derived under a very general form of weak dependence, thus being able to apply our tests to virtually all time series encountered in economics, medicine, and other applied sciences. Monte Carlo simulations show that our methodologies are able to control the procedure-wise Type I Error, and have short detection delays in the presence of breaks.

Date: 2024-02
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2402.04433 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.04433

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2402.04433