Portfolio Time Consistency and Utility Weighted Discount Rates
Oumar Mbodji and
Traian A. Pirvu
Papers from arXiv.org
Abstract:
Merton portfolio management problem is studied in this paper within a stochastic volatility, non constant time discount rate, and power utility framework. This problem is time inconsistent and the way out of this predicament is to consider the subgame perfect strategies. The later are characterized through an extended Hamilton Jacobi Bellman (HJB) equation. A fixed point iteration is employed to solve the extended HJB equation. This is done in a two stage approach: in a first step the utility weighted discount rate is introduced and characterized as the fixed point of a certain operator; in the second step the value function is determined through a linear parabolic partial differential equation. Numerical experiments explore the effect of the time discount rate on the subgame perfect and precommitment strategies.
Date: 2023-11
New Economics Papers: this item is included in nep-gth and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2402.05113 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.05113
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().