Large (and Deep) Factor Models
Bryan Kelly,
Boris Kuznetsov,
Semyon Malamud and
Teng Andrea Xu
Papers from arXiv.org
Abstract:
We open up the black box behind Deep Learning for portfolio optimization and prove that a sufficiently wide and arbitrarily deep neural network (DNN) trained to maximize the Sharpe ratio of the Stochastic Discount Factor (SDF) is equivalent to a large factor model (LFM): A linear factor pricing model that uses many non-linear characteristics. The nature of these characteristics depends on the architecture of the DNN in an explicit, tractable fashion. This makes it possible to derive end-to-end trained DNN-based SDFs in closed form for the first time. We evaluate LFMs empirically and show how various architectural choices impact SDF performance. We document the virtue of depth complexity: With enough data, the out-of-sample performance of DNN-SDF is increasing in the NN depth, saturating at huge depths of around 100 hidden layers.
Date: 2024-01
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2402.06635 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.06635
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().