End-to-End Policy Learning of a Statistical Arbitrage Autoencoder Architecture
Fabian Krause and
Jan-Peter Calliess
Papers from arXiv.org
Abstract:
In Statistical Arbitrage (StatArb), classical mean reversion trading strategies typically hinge on asset-pricing or PCA based models to identify the mean of a synthetic asset. Once such a (linear) model is identified, a separate mean reversion strategy is then devised to generate a trading signal. With a view of generalising such an approach and turning it truly data-driven, we study the utility of Autoencoder architectures in StatArb. As a first approach, we employ a standard Autoencoder trained on US stock returns to derive trading strategies based on the Ornstein-Uhlenbeck (OU) process. To further enhance this model, we take a policy-learning approach and embed the Autoencoder network into a neural network representation of a space of portfolio trading policies. This integration outputs portfolio allocations directly and is end-to-end trainable by backpropagation of the risk-adjusted returns of the neural policy. Our findings demonstrate that this innovative end-to-end policy learning approach not only simplifies the strategy development process, but also yields superior gross returns over its competitors illustrating the potential of end-to-end training over classical two-stage approaches.
Date: 2024-02
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2402.08233 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.08233
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().