Continuous-Time Best-Response and Related Dynamics in Tullock Contests with Convex Costs
Edith Elkind,
Abheek Ghosh and
Paul W. Goldberg
Papers from arXiv.org
Abstract:
Tullock contests model real-life scenarios that range from competition among proof-of-work blockchain miners to rent-seeking and lobbying activities. We show that continuous-time best-response dynamics in Tullock contests with convex costs converges to the unique equilibrium using Lyapunov-style arguments. We then use this result to provide an algorithm for computing an approximate equilibrium. We also establish convergence of related discrete-time dynamics, e.g., when the agents best-respond to the empirical average action of other agents. These results indicate that the equilibrium is a reliable predictor of the agents' behavior in these games.
Date: 2024-02, Revised 2024-10
New Economics Papers: this item is included in nep-gth and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2402.08541 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.08541
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().