Heterogeneity, Uncertainty and Learning: Semiparametric Identification and Estimation
Jackson Bunting,
Paul Diegert and
Arnaud Maurel
Papers from arXiv.org
Abstract:
We provide semiparametric identification results for a broad class of learning models in which continuous outcomes depend on three types of unobservables: i) known heterogeneity, ii) initially unknown heterogeneity that may be revealed over time, and iii) transitory uncertainty. We consider a common environment where the researcher only has access to a short panel on choices and realized outcomes. We establish identification of the outcome equation parameters and the distribution of the three types of unobservables, under the standard assumption that unknown heterogeneity and uncertainty are normally distributed. We also show that, absent known heterogeneity, the model is identified without making any distributional assumption. We then derive the asymptotic properties of a sieve MLE estimator for the model parameters, and devise a tractable profile likelihood based estimation procedure. Monte Carlo simulation results indicate that our estimator exhibits good finite-sample properties.
Date: 2024-02
New Economics Papers: this item is included in nep-dcm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2402.08575 Latest version (application/pdf)
Related works:
Working Paper: Heterogeneity, Uncertainty and Learning: Semiparametric Identification and Estimation (2024) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.08575
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().