EconPapers    
Economics at your fingertips  
 

Local-Polynomial Estimation for Multivariate Regression Discontinuity Designs

Masayuki Sawada, Takuya Ishihara, Daisuke Kurisu and Yasumasa Matsuda

Papers from arXiv.org

Abstract: We introduce a multivariate local-linear estimator for multivariate regression discontinuity designs in which treatment is assigned by crossing a boundary in the space of running variables. The dominant approach uses the Euclidean distance from a boundary point as the scalar running variable; hence, multivariate designs are handled as uni-variate designs. However, the distance running variable is incompatible with the assumption for asymptotic validity. We handle multivariate designs as multivariate. In this study, we develop a novel asymptotic normality for multivariate local-polynomial estimators. Our estimator is asymptotically valid and can capture heterogeneous treatment effects over the boundary. We demonstrate the effectiveness of our estimator through numerical simulations. Our empirical illustration of a Colombian scholarship study reveals a richer heterogeneity (including its absence) of the treatment effect that is hidden in the original estimates.

Date: 2024-02
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2402.08941 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.08941

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2402.08941