Local-Polynomial Estimation for Multivariate Regression Discontinuity Designs
Masayuki Sawada,
Takuya Ishihara,
Daisuke Kurisu and
Yasumasa Matsuda
Papers from arXiv.org
Abstract:
We introduce a multivariate local-linear estimator for multivariate regression discontinuity designs in which treatment is assigned by crossing a boundary in the space of running variables. The dominant approach uses the Euclidean distance from a boundary point as the scalar running variable; hence, multivariate designs are handled as uni-variate designs. However, the distance running variable is incompatible with the assumption for asymptotic validity. We handle multivariate designs as multivariate. In this study, we develop a novel asymptotic normality for multivariate local-polynomial estimators. Our estimator is asymptotically valid and can capture heterogeneous treatment effects over the boundary. We demonstrate the effectiveness of our estimator through numerical simulations. Our empirical illustration of a Colombian scholarship study reveals a richer heterogeneity (including its absence) of the treatment effect that is hidden in the original estimates.
Date: 2024-02
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2402.08941 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.08941
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().