Nowcasting with Mixed Frequency Data Using Gaussian Processes
Niko Hauzenberger,
Massimiliano Marcellino,
Michael Pfarrhofer and
Anna Stelzer
Papers from arXiv.org
Abstract:
We develop Bayesian machine learning methods for mixed data sampling (MIDAS) regressions. This involves handling frequency mismatches and specifying functional relationships between many predictors and the dependent variable. We use Gaussian processes (GPs) and compress the input space with structured and unstructured MIDAS variants. This yields several versions of GP-MIDAS with distinct properties and implications, which we evaluate in short-horizon now- and forecasting exercises with both simulated data and data on quarterly US output growth and inflation in the GDP deflator. It turns out that our proposed framework leverages macroeconomic Big Data in a computationally efficient way and offers gains in predictive accuracy compared to other machine learning approaches along several dimensions.
Date: 2024-02, Revised 2024-09
New Economics Papers: this item is included in nep-big, nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2402.10574 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.10574
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().