Optimizing Adaptive Experiments: A Unified Approach to Regret Minimization and Best-Arm Identification
Chao Qin and
Daniel Russo
Papers from arXiv.org
Abstract:
Practitioners conducting adaptive experiments often encounter two competing priorities: maximizing total welfare (or `reward') through effective treatment assignment and swiftly concluding experiments to implement population-wide treatments. Current literature addresses these priorities separately, with regret minimization studies focusing on the former and best-arm identification research on the latter. This paper bridges this divide by proposing a unified model that simultaneously accounts for within-experiment performance and post-experiment outcomes. We provide a sharp theory of optimal performance in large populations that not only unifies canonical results in the literature but also uncovers novel insights. Our theory reveals that familiar algorithms, such as the recently proposed top-two Thompson sampling algorithm, can optimize a broad class of objectives if a single scalar parameter is appropriately adjusted. In addition, we demonstrate that substantial reductions in experiment duration can often be achieved with minimal impact on both within-experiment and post-experiment regret.
Date: 2024-02, Revised 2024-07
New Economics Papers: this item is included in nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2402.10592 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.10592
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).