Towards Financially Inclusive Credit Products Through Financial Time Series Clustering
Tristan Bester and
Benjamin Rosman
Papers from arXiv.org
Abstract:
Financial inclusion ensures that individuals have access to financial products and services that meet their needs. As a key contributing factor to economic growth and investment opportunity, financial inclusion increases consumer spending and consequently business development. It has been shown that institutions are more profitable when they provide marginalised social groups access to financial services. Customer segmentation based on consumer transaction data is a well-known strategy used to promote financial inclusion. While the required data is available to modern institutions, the challenge remains that segment annotations are usually difficult and/or expensive to obtain. This prevents the usage of time series classification models for customer segmentation based on domain expert knowledge. As a result, clustering is an attractive alternative to partition customers into homogeneous groups based on the spending behaviour encoded within their transaction data. In this paper, we present a solution to one of the key challenges preventing modern financial institutions from providing financially inclusive credit, savings and insurance products: the inability to understand consumer financial behaviour, and hence risk, without the introduction of restrictive conventional credit scoring techniques. We present a novel time series clustering algorithm that allows institutions to understand the financial behaviour of their customers. This enables unique product offerings to be provided based on the needs of the customer, without reliance on restrictive credit practices.
Date: 2024-02
New Economics Papers: this item is included in nep-ban, nep-fle and nep-pay
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2402.11066 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.11066
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().