Functional Partial Least-Squares: Optimal Rates and Adaptation
Andrii Babii,
Marine Carrasco and
Idriss Tsafack
Papers from arXiv.org
Abstract:
We consider the functional linear regression model with a scalar response and a Hilbert space-valued predictor, a well-known ill-posed inverse problem. We propose a new formulation of the functional partial least-squares (PLS) estimator related to the conjugate gradient method. We shall show that the estimator achieves the (nearly) optimal convergence rate on a class of ellipsoids and we introduce an early stopping rule which adapts to the unknown degree of ill-posedness. Some theoretical and simulation comparison between the estimator and the principal component regression estimator is provided.
Date: 2024-02
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2402.11134 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.11134
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().