EconPapers    
Economics at your fingertips  
 

Shall We Team Up: Exploring Spontaneous Cooperation of Competing LLM Agents

Zengqing Wu, Run Peng, Shuyuan Zheng, Qianying Liu, Xu Han, Brian Inhyuk Kwon, Makoto Onizuka, Shaojie Tang and Chuan Xiao

Papers from arXiv.org

Abstract: Large Language Models (LLMs) have increasingly been utilized in social simulations, where they are often guided by carefully crafted instructions to stably exhibit human-like behaviors during simulations. Nevertheless, we doubt the necessity of shaping agents' behaviors for accurate social simulations. Instead, this paper emphasizes the importance of spontaneous phenomena, wherein agents deeply engage in contexts and make adaptive decisions without explicit directions. We explored spontaneous cooperation across three competitive scenarios and successfully simulated the gradual emergence of cooperation, findings that align closely with human behavioral data. This approach not only aids the computational social science community in bridging the gap between simulations and real-world dynamics but also offers the AI community a novel method to assess LLMs' capability of deliberate reasoning.

Date: 2024-02, Revised 2024-10
New Economics Papers: this item is included in nep-ain, nep-cmp and nep-hme
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2402.12327 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.12327

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2402.12327