Optimal Budget Aggregation with Star-Shaped Preferences
Felix Brandt,
Matthias Greger,
Erel Segal-Halevi and
Warut Suksompong
Papers from arXiv.org
Abstract:
We study the problem of aggregating distributions, such as budget proposals, into a collective distribution. An ideal aggregation mechanism would be Pareto efficient, strategyproof, and fair. Most previous work assumes that agents evaluate budgets according to the $\ell_1$ distance to their ideal budget. We investigate and compare different models from the larger class of star-shaped utility functions - a multi-dimensional generalization of single-peaked preferences. For the case of two alternatives, we extend existing results by proving that under very general assumptions, the uniform phantom mechanism is the only strategyproof mechanism that satisfies proportionality - a minimal notion of fairness introduced by Freeman et al. (2021). Moving to the case of more than two alternatives, we establish sweeping impossibilities for $\ell_1$ and $\ell_\infty$ disutilities: no mechanism satisfies efficiency, strategyproofness, and proportionality. We then propose a new kind of star-shaped utilities based on evaluating budgets by the ratios of shares between a given budget and an ideal budget. For these utilities, efficiency, strategyproofness, and fairness become compatible. In particular, we prove that the mechanism that maximizes the Nash product of individual utilities is characterized by group-strategyproofness and a core-based fairness condition.
Date: 2024-02, Revised 2024-10
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2402.15904 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.15904
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().