Limit Order Book Simulations: A Review
Konark Jain,
Nikan Firoozye,
Jonathan Kochems and
Philip Treleaven
Papers from arXiv.org
Abstract:
Limit Order Books (LOBs) serve as a mechanism for buyers and sellers to interact with each other in the financial markets. Modelling and simulating LOBs is quite often necessary for calibrating and fine-tuning the automated trading strategies developed in algorithmic trading research. The recent AI revolution and availability of faster and cheaper compute power has enabled the modelling and simulations to grow richer and even use modern AI techniques. In this review we examine the various kinds of LOB simulation models present in the current state of the art. We provide a classification of the models on the basis of their methodology and provide an aggregate view of the popular stylized facts used in the literature to test the models. We additionally provide a focused study of price impact's presence in the models since it is one of the more crucial phenomena to model in algorithmic trading. Finally, we conduct a comparative analysis of various qualities of fits of these models and how they perform when tested against empirical data.
Date: 2024-02, Revised 2024-03
New Economics Papers: this item is included in nep-ain, nep-cmp and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2402.17359 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.17359
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().