Quasi-Bayesian Estimation and Inference with Control Functions
Ruixuan Liu and
Zhengfei Yu
Papers from arXiv.org
Abstract:
This paper introduces a quasi-Bayesian method that integrates frequentist nonparametric estimation with Bayesian inference in a two-stage process. Applied to an endogenous discrete choice model, the approach first uses kernel or sieve estimators to estimate the control function nonparametrically, followed by Bayesian methods to estimate the structural parameters. This combination leverages the advantages of both frequentist tractability for nonparametric estimation and Bayesian computational efficiency for complicated structural models. We analyze the asymptotic properties of the resulting quasi-posterior distribution, finding that its mean provides a consistent estimator for the parameters of interest, although its quantiles do not yield valid confidence intervals. However, bootstrapping the quasi-posterior mean accounts for the estimation uncertainty from the first stage, thereby producing asymptotically valid confidence intervals.
Date: 2024-02, Revised 2025-05
New Economics Papers: this item is included in nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2402.17374 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2402.17374
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().