Optimal positioning in derivative securities in incomplete markets
Tim Leung,
Matthew Lorig and
Yoshihiro Shirai
Papers from arXiv.org
Abstract:
This paper analyzes a problem of optimal static hedging using derivatives in incomplete markets. The investor is assumed to have a risk exposure to two underlying assets. The hedging instruments are vanilla options written on a single underlying asset. The hedging problem is formulated as a utility maximization problem whereby the form of the optimal static hedge is determined. Among our results, a semi-analytical solution for the optimizer is found through variational methods for exponential, power/logarithmic, and quadratic utility. When vanilla options are available for each underlying asset, the optimal solution is related to the fixed points of a Lipschitz map. In the case of exponential utility, there is only one such fixed point, and subsequent iterations of the map converge to it.
Date: 2024-02
New Economics Papers: this item is included in nep-rmg and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2403.00139 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.00139
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().