Inference for Interval-Identified Parameters Selected from an Estimated Set
Sukjin Han and
Adam McCloskey
Papers from arXiv.org
Abstract:
Interval identification of parameters such as average treatment effects, average partial effects and welfare is particularly common when using observational data and experimental data with imperfect compliance due to the endogeneity of individuals' treatment uptake. In this setting, the researcher is typically interested in a treatment or policy that is either selected from the estimated set of best-performers or arises from a data-dependent selection rule. In this paper, we develop new inference tools for interval-identified parameters chosen via these forms of selection. We develop three types of confidence intervals for data-dependent and interval-identified parameters, discuss how they apply to several examples of interest and prove their uniform asymptotic validity under weak assumptions.
Date: 2024-03, Revised 2025-04
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2403.00422 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.00422
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().