Minimax-Regret Sample Selection in Randomized Experiments
Yuchen Hu,
Henry Zhu,
Emma Brunskill and
Stefan Wager
Papers from arXiv.org
Abstract:
Randomized controlled trials are often run in settings with many subpopulations that may have differential benefits from the treatment being evaluated. We consider the problem of sample selection, i.e., whom to enroll in a randomized trial, such as to optimize welfare in a heterogeneous population. We formalize this problem within the minimax-regret framework, and derive optimal sample-selection schemes under a variety of conditions. Using data from a COVID-19 vaccine trial, we also highlight how different objectives and decision rules can lead to meaningfully different guidance regarding optimal sample allocation.
Date: 2024-03, Revised 2024-06
New Economics Papers: this item is included in nep-ecm and nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2403.01386 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.01386
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().