Experimenting with Generative AI: Does ChatGPT Really Increase Everyone's Productivity?
Voraprapa Nakavachara,
Tanapong Potipiti and
Thanee Chaiwat
Papers from arXiv.org
Abstract:
Generative AI technologies such as ChatGPT, Gemini, and MidJourney have made remarkable progress in recent years. Recent literature has documented ChatGPT's positive impact on productivity in areas where it has strong expertise, attributable to extensive training datasets, such as the English language and Python/SQL programming. However, there is still limited literature regarding ChatGPT's performance in areas where its capabilities could still be further enhanced. This paper aims to fill this gap. We conducted an experiment in which economics students were asked to perform writing analysis tasks in a non-English language (specifically, Thai) and math & data analysis tasks using a less frequently used programming package (specifically, Stata). The findings suggest that, on average, participants performed better using ChatGPT in terms of scores and time taken to complete the tasks. However, a detailed examination reveals that 34% of participants saw no improvement in writing analysis tasks, and 42% did not improve in math & data analysis tasks when employing ChatGPT. Further investigation indicated that higher-ability students, as proxied by their econometrics grades, were the ones who performed worse in writing analysis tasks when using ChatGPT. We also found evidence that students with better digital skills performed better with ChatGPT. This research provides insights on the impact of generative AI. Thus, stakeholders can make informed decisions to implement appropriate policy frameworks or redesign educational systems. It also highlights the critical role of human skills in addressing and complementing the limitations of technology.
Date: 2024-03
New Economics Papers: this item is included in nep-ain, nep-eff and nep-tid
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2403.01770 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.01770
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().