EconPapers    
Economics at your fingertips  
 

Matrix-based Prediction Approach for Intraday Instantaneous Volatility Vector

Sung Hoon Choi and Donggyu Kim

Papers from arXiv.org

Abstract: In this paper, we introduce a novel method for predicting intraday instantaneous volatility based on Ito semimartingale models using high-frequency financial data. Several studies have highlighted stylized volatility time series features, such as interday auto-regressive dynamics and the intraday U-shaped pattern. To accommodate these volatility features, we propose an interday-by-intraday instantaneous volatility matrix process that can be decomposed into low-rank conditional expected instantaneous volatility and noise matrices. To predict the low-rank conditional expected instantaneous volatility matrix, we propose the Two-sIde Projected-PCA (TIP-PCA) procedure. We establish asymptotic properties of the proposed estimators and conduct a simulation study to assess the finite sample performance of the proposed prediction method. Finally, we apply the TIP-PCA method to an out-of-sample instantaneous volatility vector prediction study using high-frequency data from the S&P 500 index and 11 sector index funds.

Date: 2024-03, Revised 2024-12
New Economics Papers: this item is included in nep-ecm, nep-mst and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2403.02591 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.02591

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2403.02591