Extracting Mechanisms from Heterogeneous Effects: An Identification Strategy for Mediation Analysis
Jiawei Fu
Papers from arXiv.org
Abstract:
Understanding causal mechanisms is crucial for explaining and generalizing empirical phenomena. Causal mediation analysis offers statistical techniques to quantify the mediation effects. However, current methods often require multiple ignorability assumptions or sophisticated research designs. In this paper, we introduce a novel identification strategy that enables the simultaneous identification and estimation of treatment and mediation effects. By combining explicit and implicit mediation analysis, this strategy exploits heterogeneous treatment effects through a new decomposition of total treatment effects. Monte Carlo simulations demonstrate that the method is more accurate and precise across various scenarios. To illustrate the efficiency and efficacy of our method, we apply it to estimate the causal mediation effects in two studies with distinct data structures, focusing on common pool resource governance and voting information. Additionally, we have developed statistical software to facilitate the implementation of our method.
Date: 2024-03, Revised 2024-10
New Economics Papers: this item is included in nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2403.04131 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.04131
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().