Probabilistic Forecasting of Real-Time Electricity Market Signals via Interpretable Generative AI
Xinyi Wang,
Qing Zhao and
Lang Tong
Papers from arXiv.org
Abstract:
This paper introduces a generative AI approach to probabilistic forecasting of real-time electricity market signals, including locational marginal prices, interregional price spreads, and demand-supply imbalances. We present WIAE-GPF, a Weak Innovation AutoEncoder-based Generative Probabilistic Forecasting architecture that generates future samples of multivariate time series. Unlike traditional black-box models, WIAE-GPF offers interpretability through the Wiener-Kallianpur innovation representation for nonparametric time series, making it a nonparametric generalization of the Wiener/Kalman filter-based forecasting. A novel learning algorithm with structural convergence guarantees is proposed, ensuring that, under ideal training conditions, the generated forecast samples match the ground truth conditional probability distribution. Extensive tests using publicly available data from U.S. independent system operators under various point and probabilistic forecasting metrics demonstrate that WIAE-GPF consistently outperforms classical methods and cutting-edge machine learning techniques.
Date: 2024-03, Revised 2024-09
New Economics Papers: this item is included in nep-big, nep-cmp and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2403.05743 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.05743
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().