EconPapers    
Economics at your fingertips  
 

Robust Estimation and Inference for Categorical Data

Max Welz

Papers from arXiv.org

Abstract: While there is a rich literature on robust methodologies for contamination in continuously distributed data, contamination in categorical data is largely overlooked. This is regrettable because many datasets are categorical and oftentimes suffer from contamination. Examples include inattentive responding and bot responses in questionnaires or zero-inflated count data. We propose a novel class of contamination-robust estimators of models for categorical data, coined $C$-estimators (``$C$'' for categorical). We show that the countable and possibly finite sample space of categorical data results in non-standard theoretical properties. Notably, in contrast to classic robustness theory, $C$-estimators can be simultaneously robust \textit{and} fully efficient at the postulated model. In addition, a certain particularly robust specification fails to be asymptotically Gaussian at the postulated model, but is asymptotically Gaussian in the presence of contamination. We furthermore propose a diagnostic test to identify categorical outliers and demonstrate the enhanced robustness of $C$-estimators in a simulation study.

Date: 2024-03, Revised 2024-12
New Economics Papers: this item is included in nep-ecm and nep-mac
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2403.11954 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.11954

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2403.11954