Student t-L\'evy regression model in YUIMA
Hiroki Masuda,
Lorenzo Mercuri and
Yuma Uehara
Papers from arXiv.org
Abstract:
The aim of this paper is to discuss an estimation and a simulation method in the \textsf{R} package YUIMA for a linear regression model driven by a Student-$t$ L\'evy process with constant scale and arbitrary degrees of freedom. This process finds applications in several fields, for example finance, physic, biology, etc. The model presents two main issues. The first is related to the simulation of a sample path at high-frequency level. Indeed, only the $t$-L\'evy increments defined on an unitary time interval are Student-$t$ distributed. In YUIMA, we solve this problem by means of the inverse Fourier transform for simulating the increments of a Student-$t$ L\'{e}vy defined on a interval with any length. A second problem is due to the fact that joint estimation of trend, scale, and degrees of freedom does not seem to have been investigated as yet. In YUIMA, we develop a two-step estimation procedure that efficiently deals with this issue. Numerical examples are given in order to explain methods and classes used in the YUIMA package.
Date: 2024-02
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2403.12078 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.12078
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).