Inflation Target at Risk: A Time-varying Parameter Distributional Regression
Yunyun Wang,
Tatsushi Oka and
Dan Zhu
Papers from arXiv.org
Abstract:
Macro variables frequently display time-varying distributions, driven by the dynamic and evolving characteristics of economic, social, and environmental factors that consistently reshape the fundamental patterns and relationships governing these variables. To better understand the distributional dynamics beyond the central tendency, this paper introduces a novel semi-parametric approach for constructing time-varying conditional distributions, relying on the recent advances in distributional regression. We present an efficient precision-based Markov Chain Monte Carlo algorithm that simultaneously estimates all model parameters while explicitly enforcing the monotonicity condition on the conditional distribution function. Our model is applied to construct the forecasting distribution of inflation for the U.S., conditional on a set of macroeconomic and financial indicators. The risks of future inflation deviating excessively high or low from the desired range are carefully evaluated. Moreover, we provide a thorough discussion about the interplay between inflation and unemployment rates during the Global Financial Crisis, COVID, and the third quarter of 2023.
Date: 2024-03
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2403.12456 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.12456
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().