Rank-Dependent Predictable Forward Performance Processes
Bahman Angoshtari and
Shida Duan
Papers from arXiv.org
Abstract:
Predictable forward performance processes (PFPPs) are stochastic optimal control frameworks for an agent who controls a randomly evolving system but can only prescribe the system dynamics for a short period ahead. This is a common scenario in which a controlling agent frequently re-calibrates her model. We introduce a new class of PFPPs based on rank-dependent utility, generalizing existing models that are based on expected utility theory (EUT). We establish existence of rank-dependent PFPPs under a conditionally complete market and exogenous probability distortion functions which are updated periodically. We show that their construction reduces to solving an integral equation that generalizes the integral equation obtained under EUT in previous studies. We then propose a new approach for solving the integral equation via theory of Volterra equations. We illustrate our result in the special case of conditionally complete Black-Scholes model.
Date: 2024-03
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2403.16228 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.16228
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().