Prediction-sharing During Training and Inference
Yotam Gafni,
Ronen Gradwohl and
Moshe Tennenholtz
Papers from arXiv.org
Abstract:
Two firms are engaged in a competitive prediction task. Each firm has two sources of data -- labeled historical data and unlabeled inference-time data -- and uses the former to derive a prediction model, and the latter to make predictions on new instances. We study data-sharing contracts between the firms. The novelty of our study is to introduce and highlight the differences between contracts that share prediction models only, contracts to share inference-time predictions only, and contracts to share both. Our analysis proceeds on three levels. First, we develop a general Bayesian framework that facilitates our study. Second, we narrow our focus to two natural settings within this framework: (i) a setting in which the accuracy of each firm's prediction model is common knowledge, but the correlation between the respective models is unknown; and (ii) a setting in which two hypotheses exist regarding the optimal predictor, and one of the firms has a structural advantage in deducing it. Within these two settings we study optimal contract choice. More specifically, we find the individually rational and Pareto-optimal contracts for some notable cases, and describe specific settings where each of the different sharing contracts emerge as optimal. Finally, in the third level of our analysis we demonstrate the applicability of our concepts in a synthetic simulation using real loan data.
Date: 2024-03
New Economics Papers: this item is included in nep-cta
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2403.17515 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.17515
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().