On the Pettis Integral Approach to Large Population Games
Masaki Miyashita and
Takashi Ui
Papers from arXiv.org
Abstract:
The analysis of large population economies with incomplete information often entails the integration of a continuum of random variables. We showcase the usefulness of the integral notion \`a la Pettis (1938) to study such models. We present several results on Pettis integrals, including convenient sufficient conditions for Pettis integrability and Fubini-like exchangeability formulae, illustrated through a running example. Building on these foundations, we conduct a unified analysis of Bayesian games with arbitrarily many heterogeneous agents. We provide a sufficient condition on payoff structures, under which the equilibrium uniqueness is guaranteed across all signal structures. Our condition is parsimonious, as it turns out necessary when strategic interactions are undirected. We further identify the moment restrictions, imposed on the equilibrium action-state joint distribution, which have crucial implications for information designer's problem of persuading a population of strategically interacting agents. To attain these results, we introduce and develop novel mathematical tools, built on the theory of integral kernels and reproducing kernel Hilbert spaces in functional analysis.
Date: 2024-03
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2403.17605 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.17605
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().