Distributional Treatment Effect with Latent Rank Invariance
Myungkou Shin
Papers from arXiv.org
Abstract:
Treatment effect heterogeneity is of a great concern when evaluating the treatment. However, even with a simple case of a binary random treatment, the distribution of treatment effect is difficult to identify due to the fundamental limitation that we cannot observe both treated potential outcome and untreated potential outcome for a given individual. This paper assumes a conditional independence assumption that the two potential outcomes are independent of each other given a scalar latent variable. Using two proxy variables, we identify conditional distribution of the potential outcomes given the latent variable. To pin down the location of the latent variable, we assume strict monotonicty on some functional of the conditional distribution; with specific example of strictly increasing conditional expectation, we label the latent variable as 'latent rank' and motivate the identifying assumption as 'latent rank invariance.'
Date: 2024-03, Revised 2024-06
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2403.18503 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.18503
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().