Enhancing Financial Data Visualization for Investment Decision-Making
Nisarg Patel,
Harmit Shah and
Kishan Mewada
Papers from arXiv.org
Abstract:
Navigating the intricate landscape of financial markets requires adept forecasting of stock price movements. This paper delves into the potential of Long Short-Term Memory (LSTM) networks for predicting stock dynamics, with a focus on discerning nuanced rise and fall patterns. Leveraging a dataset from the New York Stock Exchange (NYSE), the study incorporates multiple features to enhance LSTM's capacity in capturing complex patterns. Visualization of key attributes, such as opening, closing, low, and high prices, aids in unraveling subtle distinctions crucial for comprehensive market understanding. The meticulously crafted LSTM input structure, inspired by established guidelines, incorporates both price and volume attributes over a 25-day time step, enabling the model to capture temporal intricacies. A comprehensive methodology, including hyperparameter tuning with Grid Search, Early Stopping, and Callback mechanisms, leads to a remarkable 53% improvement in predictive accuracy. The study concludes with insights into model robustness, contributions to financial forecasting literature, and a roadmap for real-time stock market prediction. The amalgamation of LSTM networks, strategic hyperparameter tuning, and informed feature selection presents a potent framework for advancing the accuracy of stock price predictions, contributing substantively to financial time series forecasting discourse.
Date: 2023-12
New Economics Papers: this item is included in nep-big, nep-cmp and nep-for
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2403.18822 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.18822
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().