On the potential of quantum walks for modeling financial return distributions
Stijn De Backer,
Luis Rocha,
Jan Ryckebusch and
Koen Schoors
Papers from arXiv.org
Abstract:
Accurate modeling of the temporal evolution of asset prices is crucial for understanding financial markets. We explore the potential of discrete-time quantum walks to model the evolution of asset prices. Return distributions obtained from a model based on the quantum walk algorithm are compared with those obtained from classical methodologies. We focus on specific limitations of the classical models, and illustrate that the quantum walk model possesses great flexibility in overcoming these. This includes the potential to generate asymmetric return distributions with complex market tendencies and higher probabilities for extreme events than in some of the classical models. Furthermore, the temporal evolution in the quantum walk possesses the potential to provide asset price dynamics.
Date: 2024-03, Revised 2024-12
New Economics Papers: this item is included in nep-cmp and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2403.19502 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.19502
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().