EconPapers    
Economics at your fingertips  
 

Risk exchange under infinite-mean Pareto models

Yuyu Chen, Paul Embrechts and Ruodu Wang

Papers from arXiv.org

Abstract: We study the optimal decisions of agents who aim to minimize their risks by allocating their positions over extremely heavy-tailed (i.e., infinite-mean) and possibly dependent losses. The loss distributions of our focus are super-Pareto distributions which include the class of extremely heavy-tailed Pareto distributions. For a portfolio of super-Pareto losses, non-diversification is preferred by decision makers equipped with well-defined and monotone risk measures. The phenomenon that diversification is not beneficial in the presence of super-Pareto losses is further illustrated by an equilibrium analysis in a risk exchange market. First, agents with super-Pareto losses will not share risks in a market equilibrium. Second, transferring losses from agents bearing super-Pareto losses to external parties without any losses may arrive at an equilibrium which benefits every party involved. The empirical studies show that extremely heavy tails exist in real datasets.

Date: 2024-03
New Economics Papers: this item is included in nep-rmg and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2403.20171 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2403.20171

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2403.20171