Forecasting with Neuro-Dynamic Programming
Pedro Afonso Fernandes
Papers from arXiv.org
Abstract:
Economic forecasting is concerned with the estimation of some variable like gross domestic product (GDP) in the next period given a set of variables that describes the current situation or state of the economy, including industrial production, retail trade turnover or economic confidence. Neuro-dynamic programming (NDP) provides tools to deal with forecasting and other sequential problems with such high-dimensional states spaces. Whereas conventional forecasting methods penalises the difference (or loss) between predicted and actual outcomes, NDP favours the difference between temporally successive predictions, following an interactive and trial-and-error approach. Past data provides a guidance to train the models, but in a different way from ordinary least squares (OLS) and other supervised learning methods, signalling the adjustment costs between sequential states. We found that it is possible to train a GDP forecasting model with data concerned with other countries that performs better than models trained with past data from the tested country (Portugal). In addition, we found that non-linear architectures to approximate the value function of a sequential problem, namely, neural networks can perform better than a simple linear architecture, lowering the out-of-sample mean absolute forecast error (MAE) by 32% from an OLS model.
Date: 2024-04
New Economics Papers: this item is included in nep-big, nep-for and nep-mac
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2404.03737 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2404.03737
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().