Stock Recommendations for Individual Investors: A Temporal Graph Network Approach with Mean-Variance Efficient Sampling
Youngbin Lee,
Yejin Kim,
Javier Sanz-Cruzado,
Richard McCreadie and
Yongjae Lee
Papers from arXiv.org
Abstract:
Recommender systems can be helpful for individuals to make well-informed decisions in complex financial markets. While many studies have focused on predicting stock prices, even advanced models fall short of accurately forecasting them. Additionally, previous studies indicate that individual investors often disregard established investment theories, favoring their personal preferences instead. This presents a challenge for stock recommendation systems, which must not only provide strong investment performance but also respect these individual preferences. To create effective stock recommender systems, three critical elements must be incorporated: 1) individual preferences, 2) portfolio diversification, and 3) the temporal dynamics of the first two. In response, we propose a new model, Portfolio Temporal Graph Network Recommender PfoTGNRec, which can handle time-varying collaborative signals and incorporates diversification-enhancing sampling. On real-world individual trading data, our approach demonstrates superior performance compared to state-of-the-art baselines, including cutting-edge dynamic embedding models and existing stock recommendation models. Indeed, we show that PfoTGNRec is an effective solution that can balance customer preferences with the need to suggest portfolios with high Return-on-Investment. The source code and data are available at https://github.com/youngandbin/PfoTGNRec.
Date: 2024-03, Revised 2024-11
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2404.07223 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2404.07223
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().